Constant acceleration

*Input 3 values in any fields
   
System of units:

Example 1: A car accelerates from rest, find its speed in km/h after 10 seconds if the acceleration rate is 2.5 m/s2.

    
Acceleration  (a):
Distance traveled  (S):
Initial velocity  (v0 ):
Velocity at time t  (vt ):
Time  (t):
Input limit:

Additional acceleration equations     
Free Fall

*Input 2 values in any allowed fields
   
System of units:

Height  (h):
Initial downward velocity  (v0 ):
Final downward velocity (vt ):
Time upward  (t):
Time donward  (t2):
Height downward  (h2 ):
Downward motion     Upward motion     Up Down motion
Input limit:

Additional free fall equations     
Horizontal trajectory

*Input 2 values in any allowed fields
   
System of units:

Example: Projectile is trajected at a velocity of 12m/s and at an angle of 30°, find trajection distance, and time of flight.

Initial horizontal velocity  (V0 = Vx ):
Trajectory distance  (S):
Vertical final velocity  (Vy ):
Total travel time  (T):
Maximum height reached  (H):
Trajectory hit angle (θt ):
Trajectory path equation:
Input limit:
Horizontal incline trajectory

*Input 2/3/4 values in any allowed fields
   
System of units:

Example: Projectile is trajected from a point 1 meter below ground level at a velocity of 12m/s and at an angle of 30°, find trajection distance, and time of flight. (two possible solutions).

Final elevation point at ground level
Initial velocity  (V0 ):
Trajectory angle  (θ0 ):
Trajectory distance  (S):
Horizontal velocity  (Vx ):
Vertical initial velocity  (Vy0 ):
Total travel time  (T):
Maximum height reached  (H):
Change final elevation point
Relative elevation  (h2):
Trajectory final angle  (θt ):
 
Relative trajection distance  (St ):
 
Relative vertical velocity:  (Vy ):
 
Final trajectory velocity:  (Vt ):
 
Relative travel time  (Tt ):
 
Trajectory path equation:
Input limit:
Horizontal downward trajectory

*Input 3 values in any allowed fields
   
System of units:

Example: Projectile is trajected at an initial velocity of 12m/s and at an angle downward of -30°, find trajection horizontal distance, and time of flight at a point that the vertical downward velocity is -25 m/s.

Initial incline velocity  (V0 ):
Trajectory initial angle  (θ0 ):
Horizontal velocity  (Vx ):
Vertical initial velocity  (Vy0 ):
Trajectory distance  (S):
Total travel time  (T):
Altitude reached  (H):
Vertical final velocity  (Vy ):
Trajectory final angle  (θy ):
Trajectory path equation:
Input limit:
Horizontal downward trajectory - Detailed solutions of various inputs in all cases Vx was found
V0   H   S
V0   Vy   S
V0   θy   H
V0   θy   T
V0   θy   S
Vy0   θy   S
Vy   θ0   S
θ0   θy   H
θ0   θy   T
θ0   θy   S
θ0   H   S
θy   H   S
Vy  θ0  -> Smax
C l o s e