Constant acceleration
*Input 3 values in any fields
System of units:
Example 1:
A car accelerates from rest, find its speed in km/h after 10 seconds if the acceleration rate is 2.5 m/s
2
.
Acceleration (a):
cm/s^2
m/h^2
m/min^2
m/s^2
km/h^2
ft/s^2
in/s^2
mi/h^2
Distance traveled (S):
cm
dm
ft
in
km
m
mi
mm
yd
Initial velocity (v
0
):
cm/s
ft/s
in/s
km/h
km/min
km/s
m/h
m/min
m/s
mi/h
knot
yd/s
Velocity at time t (v
t
):
cm/s
ft/s
in/s
km/h
km/min
km/s
m/h
m/min
m/s
mi/h
knot
yd/s
Time (t):
h
min
s
Input limit:
Additional acceleration equations
Free Fall
*Input 2 values in any allowed fields
System of units:
Height (h):
cm
dm
ft
in
km
m
mi
mm
yd
Initial downward velocity (v
0
):
cm/s
ft/s
in/s
km/h
km/min
km/s
m/h
m/min
m/s
mi/h
knot
yd/s
Final downward velocity (v
t
):
cm/s
ft/s
in/s
km/h
km/min
km/s
m/h
m/min
m/s
mi/h
knot
yd/s
Time upward (t):
h
min
s
Time donward (t
2
):
h
min
s
Height downward (h
2
):
cm
dm
ft
in
km
m
mi
mm
yd
Downward motion
Upward motion
Up Down motion
Input limit:
Additional free fall equations
Horizontal trajectory
*Input 2 values in any allowed fields
System of units:
Example:
Projectile is trajected at a velocity of 12m/s and at an angle of 30°, find trajection distance, and time of flight.
Initial horizontal velocity (V
0
= V
x
):
cm/s
ft/s
in/s
km/h
km/min
km/s
m/h
m/min
m/s
mi/h
knot
yd/s
Trajectory distance (S):
cm
dm
ft
in
km
m
mi
mm
yd
Vertical final velocity (V
y
):
cm/s
ft/s
in/s
km/h
km/min
km/s
m/h
m/min
m/s
mi/h
knot
yd/s
Total travel time (T):
h
min
s
Maximum height reached (H):
cm
dm
ft
in
km
m
mi
mm
yd
Trajectory hit angle (θ
t
):
Trajectory path equation:
Input limit:
Additional horizontal trajectory equations
Horizontal incline trajectory
*Input 2/3/4 values in any allowed fields
System of units:
Example:
Projectile is trajected from a point 1 meter below ground level at a velocity of 12m/s and at an angle of 30°, find trajection distance, and time of flight. (two possible solutions).
Final elevation point at ground level
Initial velocity (V
0
):
cm/s
ft/s
in/s
km/h
km/min
km/s
m/h
m/min
m/s
mi/h
knot
yd/s
Trajectory angle (θ
0
):
Degree
Radian
Trajectory distance (S):
cm
dm
ft
in
km
m
mi
mm
yd
Horizontal velocity (V
x
):
cm/s
ft/s
in/s
km/h
km/min
km/s
m/h
m/min
m/s
mi/h
knot
yd/s
Vertical initial velocity (V
y0
):
cm/s
ft/s
in/s
km/h
km/min
km/s
m/h
m/min
m/s
mi/h
knot
yd/s
Total travel time (T):
h
min
s
Maximum height reached (H):
cm
dm
ft
in
km
m
mi
mm
yd
Change final elevation point
Relative elevation (h2):
cm
dm
ft
in
km
m
mi
mm
yd
Trajectory final angle (θ
t
):
Degree
Radian
Relative trajection distance (S
t
):
cm
dm
ft
in
km
m
mi
mm
yd
Relative vertical velocity: (V
y
):
cm/s
ft/s
in/s
km/h
km/min
km/s
m/h
m/min
m/s
mi/h
knot
yd/s
Final trajectory velocity: (V
t
):
cm/s
ft/s
in/s
km/h
km/min
km/s
m/h
m/min
m/s
mi/h
knot
yd/s
Relative travel time (T
t
):
h
min
s
Trajectory path equation:
Input limit:
Additional horizontal trajectory equations
Horizontal downward trajectory
*Input 3 values in any allowed fields
System of units:
Example:
Projectile is trajected at an initial velocity of 12m/s and at an angle downward of -30°, find trajection horizontal distance, and time of flight at a point that the vertical downward velocity is -25 m/s.
Initial incline velocity (V
0
):
cm/s
ft/s
in/s
km/h
km/min
km/s
m/h
m/min
m/s
mi/h
knot
yd/s
Trajectory initial angle (θ
0
):
Degree
Radian
Horizontal velocity (V
x
):
cm/s
ft/s
in/s
km/h
km/min
km/s
m/h
m/min
m/s
mi/h
knot
yd/s
Vertical initial velocity (V
y0
):
cm/s
ft/s
in/s
km/h
km/min
km/s
m/h
m/min
m/s
mi/h
knot
yd/s
Trajectory distance (S):
cm
dm
ft
in
km
m
mi
mm
yd
Total travel time (T):
h
min
s
Altitude reached (H):
cm
dm
ft
in
km
m
mi
mm
yd
Vertical final velocity (V
y
):
cm/s
ft/s
in/s
km/h
km/min
km/s
m/h
m/min
m/s
mi/h
knot
yd/s
Trajectory final angle (θ
y
):
Degree
Radian
Trajectory path equation:
Input limit:
Additional horizontal trajectory equations
Horizontal downward trajectory - Detailed solutions of various inputs in all cases V
x
was found
V
0
H S
V
0
V
y
S
V
0
θ
y
H
V
0
θ
y
T
V
0
θ
y
S
V
y0
θ
y
S
V
y
θ
0
S
θ
0
θ
y
H
θ
0
θ
y
T
θ
0
θ
y
S
θ
0
H S
θ
y
H S
V
y
θ
0
-> S
max
C l o s e